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Substituting this solution in the Schroedinger equation we find: 

Aoelk:<{- k2 + 2m (E - V)} + Al eik1X{_ k~+ 2m (E - V)} = 0 
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If we multiply by e- ikX and integrate from 0 to a, we get: 
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We choose our origin of energy so that the mean value of V va.nishes, 
i.e.: 
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° Thus we have: 
Ao (E - To) - Ai V: = 0 

Similarly by mult.iplying by e- ik1X and integrating we find: 

- Ao VI + Al (E - T 1) = 0 
Here: 

and: 
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(the free-electron kinetic energies corresponding to the values k and 
k 1): 
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