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where K, = — Suppose for simplicity that apart from the constant
term, A,, only one Fourier component K, is important; we then have:
p=e* (4,4 4, e K1¥) (18)
= A el 4 elfax where k&, =k — K,

Substituting this solution in the Schroedinger equation we find:
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If we multiply by e~""* and integrate from 0 to a, we get:
% 2
il oy [ - Vi
o A
@ 2md, _ix
—J;Te 11XV dzx=0 (20)

We choose our origin of energy so that the mean value of V vanishes,
ie.:

a
joV(x) dz=0 (21)
Thus we have:
Ao (£ — To) - A1 Vf =0 (22)
Similarly by multiplying by e~'*** and integrating we find:
— Ay Vy+ 4, (B — Ty =0 (23)
Here:
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(the free-electron kinetic energies corresponding to the values £ and

ky):
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